

2.2/23-1856_V1

Valide du **20 mars 2024** au **31 janvier 2026**

Sur le procédé

Larson® cassette sur support bois

Titulaire(s): Société Alucoil SA

Internet: www.alucoil.com

Distributeur(s): Société Aliberico France

Internet: www.aliberico.com

Descripteur:

Le système **larson**® cassette est un système de bardage rapporté à base d'éléments façonnés en forme de cassettes à partir de panneaux composites **larson**®

Ces panneaux sont fabriqués par le biais d'un processus industriel linéaire qui consiste à joindre, de manière continue, une âme de polyéthylène (PE), une âme avec l'adjonction d'une charge minérale (FR) ou une âme minérale (A2) et deux feuilles d'aluminium.

Groupe Spécialisé n° 2.2 - Produits et procédés de bardage rapporté, vêtage et vêture

Famille de produit/Procédé : Bardage rapporté en composite sur support bois

Secrétariat : CSTB, 84 avenue Jean Jaurès, FR-77447 Marne la Vallée Cedex 2

Tél.: 01 64 68 82 82 - email: secretariat.at@cstb.fr

www.ccfat.fr

AVANT-PROPOS

Les Avis Techniques et les Documents Techniques d'Application sont destinés à mettre à disposition des acteurs de la construction des éléments d'appréciation sur la façon de concevoir et de construire des ouvrages au moyen de produits ou procédés de construction dont la constitution ou l'emploi ne relèvent pas des savoir-faire et pratiques traditionnels. Au terme d'une évaluation collective, l'avis technique de la commission se prononce sur l'aptitude à l'emploi des produits ou procédés relativement aux exigences réglementaires et d'usage auxquelles l'ouvrage à construire doit normalement satisfaire.

Versions du document

Version	Description	Rapporteur	Président
V1	Cette version annule et remplace l'Avis Technique n° 2.2/14-1643_V3. La scission de l'Avis Technique 2.2/14-1643_V3 est issue de la décision du Groupe Spécialisé 2.2 du 05 février 2020.	Aurélie BAREILLE	Stéphane FAYARD

Table des matières

1. A	vis du Groupe Spécialisé	5
1.1.	Définition succincte	5
1.1.1.	Description succincte	5
1.1.2.	Identification	5
1.2.	AVIS	5
1.2.1.	Domaine d'emploi accepté	5
1.2.2.	Appréciation sur le procédé	5
1.2.3.	Prescriptions Techniques	7
1.3.	Remarques complémentaires du Groupe Spécialisé	8
2. D	ossier Technique	10
2.1.	Données commerciales	10
2.1.1.	Coordonnées	10
2.2.	Description	10
2.3.	Domaine d'emploi	10
2.4.	Eléments et matériaux	11
2.4.1.	Cassettes	11
2.4.2.	Panneaux	12
2.4.3.	Raidisseurs collés	13
2.4.4.	Tasseaux et liteaux en bois	15
2.4.5.	Lisses métalliques	15
2.4.6.	Ossature secondaire Erreur ! Sig	net non défini.
2.4.7.	Eléments d'angle (cf. 18, 18bis, 19, 19bis et 20)	16
2.4.8.	Profilés d'habillage complémentaires	16
2.4.9.	Isolant	16
2.5.	Fabrication	16
2.5.1.	Fabrication des panneaux	16
2.5.2.	Fabrication des cassettes	17
2.6.	Contrôles de fabrication	17
2.6.1.	Contrôles des matières premières	17
2.6.2.	Contrôles sur les panneaux	17
2.6.3.	Contrôles sur les cassettes	17
2.7.	Identification du produit	18
2.8.	Fourniture et assistance technique	18
2.9.	Mise en œuvre de l'isolation thermique et de l'ossature	18
2.9.1.	Isolation thermique	18
2.9.2.	Mise en œuvre de l'ossature tertiaire	18
2.10.	Mise en œuvre	19
2.10.	1. Principes généraux de pose sur parois de COB ou de CLT	19
2.10.2	2. Principes de mise en œuvre sur COB	19
2.10.3	3. Conception d'une paroi en CLT	19
2.10.4	4. Dispositions particulières	20
2.10.	5. Principes généraux de pose de l'ossature tertiaire	20
2.10.6	5. Pose des cassettes sur ossature aluminium	20
2.10.	7. Ouverture de ventilation	20
2.10.8	8. Fractionnement de la lame d'air	21
2.10.9	9. Traitement des points singuliers	21

2.10.1	0.	Sens de laquage	21
2.11.	Entre	etien et réparation	21
2.11.1		Entretien	21
2.11.2	١.	Remplacement d'une cassette	21
2.12.	Résu	Iltats expérimentaux	21
2.13.	Réfé	rences	22
2.13.1		Données Environnementales	22
2.13.2	١.	Autres références	22
Tableaux	x et F	igures du Dossier Technique	23
Figures o	du Do	ssier Technique	27

1. Avis du Groupe Spécialisé

Le Groupe Spécialisé n° 2.2 - Produits et procédés de bardage rapporté, vêtage et vêture de la Commission chargée de formuler les Avis Techniques a examiné, le 19 septembre 2023, le procédé larson® cassette sur support bois, présenté par la Société Alucoil SA. Il a formulé, sur ce procédé, l'Avis Technique ci-après. L'avis a été formulé pour les utilisations en France métropolitaine.

1.1. Définition succincte

1.1.1. Description succincte

Le système **larson**[®] cassette est un système de bardage rapporté à base d'éléments façonnés en forme de cassettes à partir de panneaux composites **larson**[®]

Ces panneaux sont fabriqués par le biais d'un processus industriel linéaire qui consiste à joindre, de manière continue, une âme de polyéthylène (PE), une âme avec l'adjonction d'une charge minérale (FR) ou une âme minérale (A2) et deux feuilles d'aluminium.

Caractéristiques générales

Tableau 1 - Dimensions des cassettes

Epaisseur (mm)	Cassettes sans raidisseur Dimensions L x H (mm)	Cassettes avec raidisseurs Dimensions L x H (mm)
	1200 X 900	3400 x 1350
4	1350 x 850	1200 x 1800
4 mm	900 x 1200	1800 x 1200
	850 x 1350	1350 x 3400

· Masses surfaciques des panneaux

larson® PE: 5,56 kg/m²
 larson® FR: 7,78 kg/m²
 larson® A2: 8,25 kg/m²

• Dimensions standard des cassettes

Les dimensions standard vues des cassettes sont liées aux dimensions standards des panneaux diminués de la profondeur des retours de 45 mm.

Aspect et coloris

Face vue plane avec prélaquage PVDF 31 Kynar ou 44 μm ou HQP 23 μm.

1.1.2. Identification

Les panneaux /cassettes LARSON bénéficiant d'un certificat sont identifiables par un marquage conforme aux « Exigences particulières de la Certification (QB15) des bardages rapportés, vêtures et vêtages, et des habillages de sous-toiture ». Le marquage est conforme au § 2.7 du Dossier Technique.

1.2. AVIS

1.2.1. Domaine d'emploi accepté

Ce procédé est utilisable sur parois planes et verticales, neuves ou préexistantes, de COB conforme au NF DTU 31.2 de 2019 et sur panneaux bois lamellé-croisé porteur en façade (CLT) visé par un Avis Technique du Groupe Spécialisé n°3, situées en étage et à rez-de-chaussée protégé des risques de chocs.

Le domaine d'emploi est détaillé au paragraphe 2.3 du Dossier Technique.

1.2.2. Appréciation sur le procédé

1.2.2.1. Satisfaction aux lois et règlements en vigueur et autres qualités d'aptitude à l'emploi

Données environnementales

Le procédé LARSON ne dispose d'aucune Déclaration Environnementale (DE) et ne peut donc revendiquer aucune performance environnementale particulière. Il est rappelé que les DE n'entrent pas dans le champ d'examen d'aptitude à l'emploi du procédé.

Aspects sanitaires

Le présent avis est formulé au regard de l'engagement écrit du titulaire de respecter la réglementation, et notamment l'ensemble des obligations réglementaires relatives aux produits pouvant contenir substances dangereuses, pour leur fabrication, leur intégration dans les ouvrages du domaine d'emploi accepté et l'exploitation de ceux-ci. Le contrôle des informations et déclarations délivrées en application des réglementations en vigueur n'entre pas dans le champ du présent avis. Le titulaire du présent avis conserve l'entière responsabilité de ces informations et déclarations.

Prévention des accidents lors de la mise en œuvre

Elle peut être normalement assurée.

1.2.2.2. Aptitude à l'emploi

Stabilité

Le bardage rapporté ne participe pas aux fonctions de transmission des charges, de contreventement et de résistance aux chocs de sécurité. Elles incombent à l'ouvrage qui le supporte.

La stabilité du bardage rapporté sur cet ouvrage est convenablement assurée dans le domaine d'emploi proposé.

Sécurité en cas d'incendie

Le respect de la Réglementation incendie en vigueur est à vérifier au cas par cas selon le bâtiment visé.

Les vérifications à effectuer (notamment quant à la règle dite du "C + D", y compris pour les bâtiments en service) doivent prendre en compte les caractéristiques suivantes :

- Classement en réaction au feu sans raidisseur collé (cf. § 2.12 du Dossier Technique) :
 - larson® PE: rapport 16/13129-1954 de LGAI classement non valable sur support bois
 - larson® FR: rapport 16/12641-1552 de LGAI classement non valable sur support bois
 - larson® A2: rapport EFR-18-001730 Efectis
- Cassette avec raidisseurs collés quel que soit le type de panneau utilisé (PE, FR ou A2) modèle de cassette : non classé
- Masse combustible :

PE: 124 MJ/m²
 FR: 65,5 MJ/m²
 A2: 15,58 MJ/m²

Pose en zones sismiques

Le procédé de bardage rapporté **Larson**® Cassette peut être mis en œuvre en zones et bâtiments définis au § 2.3 du Dossier Technique.

Isolation thermique

Le respect de la Règlementation Thermique en vigueur est à vérifier au cas par cas selon le bâtiment visé.

Eléments de calcul thermique

Le coefficient de transmission thermique surfacique Up d'une paroi intégrant un système d'isolation par l'extérieur à base de bardage ventilé se calcule d'après la formule suivante :

$$U_p = U_c + \sum_{i} \frac{\psi_i}{E_i} + n \cdot \chi_j$$

Avec :

Uc est le coefficient de transmission thermique surfacique en partie courante, en W/(m2.K).

ψi est le coefficient de transmission thermique linéique du pont thermique intégré i, en W/(m.K), (ossatures).

Ei est l'entraxe du pont thermique linéique i, en m.

n est le nombre de ponts thermiques ponctuels par m² de paroi.

χj est le coefficient de transmission thermique ponctuel du pont thermique intégré j, en W/K.

Les coefficients ψ et χ doivent être déterminés par simulation numérique conformément à la méthode donnée dans les règles Th-Bât, fascicule Ponts thermiques. En absence de valeurs calculées numériquement, les valeurs par défaut données au § 2.4 du fascicule Parois opaques du document « RT : valeurs et coefficients pour l'application des règles Th-Bât » peuvent être utilisées.

Au droit des points singuliers, il convient de tenir compte, en outre, des déperditions par les profilés d'habillage.

Etanchéité

A l'air : Elle incombe à la paroi support.

A l'eau:

- Joints verticaux : elle est assurée de façon satisfaisante en partie courante par la faible largeur des joints ouverts entre éléments adjacents, compte tenu de la fonction drainante des profils porteurs et de la présence de la lame d'air ;
- Joints horizontaux : elle est assurée par un relevé d'au moins 30 mm. Le recouvrement entre la cassette et le pliage supérieur d'une autre cassette sera au moins de 20 mm;

- Points singuliers : elle est assurée par les profilés d'habillage ou par des façonnages réalisés en LARSON pour des hauteurs d'ouvrage ≤10 m ou en tôlerie pour des hauteurs d'ouvrage ≥18 m.
- L'étanchéité est assurée de façon satisfaisante dans le cadre du domaine d'emploi accepté.

Performances aux chocs

Les cassettes LARSON sont sensibles aux chocs de petits corps durs, sans toutefois que le revêtement en soit altéré. La trace des chocs normalement subis en étages est considérée comme acceptable, en conséquence l'emploi en classe d'exposition Q1 selon la P08-302 et les *Cahiers du CSTB* 3546-V2 et 3534 est possible.

1.2.2.3. Durabilité - Entretien

La liaison entre les tôles d'aluminium et l'âme est considérée comme durable compte tenu de la technologie employée, des essais et de l'expérience.

L'effet de bilame est négligeable et les dilatations des éléments se font sans effort compte tenu du mode de fixation.

Dans ces conditions, la durabilité propre des constituants et leur compatibilité laissent raisonnablement espérer une durabilité équivalente à celle des bardages métalliques traditionnels.

1.2.2.4. Fabrication et contrôle

Cet avis est formulé en prenant en compte les contrôles et modes de vérification de fabrication décrits dans le Dossier Technique Etabli par le Titulaire (DTET).

La fabrication des panneaux LARSON fait l'objet d'un autocontrôle systématique régulièrement surveillé par le CSTB, permettant d'assurer une constance convenable de la qualité.

Le fabricant se prévalant du présent Avis Technique doit être en mesure de produire un certificat délivré par le CSTB, attestant que le produit est conforme à des caractéristiques décrites dans le référentiel de certification après évaluation selon les modalités de contrôle définies dans ce référentiel. Le certificat indique le numéro de l'usine.

Les produits bénéficiant d'un certificat valide sont identifiables par la présence sur les éléments du logo ⁹⁸, suivi d'un numéro identifiant l'usine et d'un numéro identifiant le produit.

Le façonnage et le collage des raidisseurs des panneaux LARSON en cassette est réalisé par des transformateurs certifiés pour cette opération par le CSTB. Il est délivré à chaque transformateur un certificat sissant le produit à façonner et à coller les raidisseurs qui reçoit un marquage supplémentaire du transformateur.

1.2.2.5. Fourniture

ALUCOIL assure la fourniture du système complet, à l'exclusion des chevilles et de la visserie approvisionnés directement par le poseur en conformité avec la description qui en est faite au Dossier Technique.

1.2.2.6. Mise en œuvre

Le système LARSON permet une mise en œuvre sans difficulté particulière, moyennant une reconnaissance préalable du support et un calepinage des cassettes et profilés complémentaires.

Cette mise en œuvre fait appel à des dispositifs extérieurs de montage tels que nacelles et échafaudages et relève des dispositions couramment utilisées dans les procédés de revêtement de façade.

ALUCOIL apporte, sur demande de l'entreprise de pose son assistance technique.

1.2.3. Prescriptions Techniques

1.2.3.1. Conditions de conception

Cassettes avec raidisseurs collés

Un essai selon le protocole du Cahier du CSTB 3517 devra être réalisé sur la ou les configurations la plus défavorables.

Cassettes

Le choix de la finition doit tenir compte de l'atmosphère extérieure. Les panneaux sont prélaqués conformément à la norme NF EN 1396.

Le critère de déformation retenu est :

- Soit 1/30^{ème} de la diagonale ou 50 mm;
- Soit 1/50ème de la diagonale ou 30 mm).

au centre des cassettes LARSON est à définir dans les Dispositions Particulières du Marché (DPM).

Ossature aluminium

La conception et la pose de l'ossature aluminium de conception librement dilatable ou bridée seront conformes aux prescriptions « Règles générales de conception et de mise en œuvre de l'ossature métallique et de l'isolation thermique des bardages rapportés faisant l'objet d'un Avis Technique » du Cahier du CSTB 3194_V3, renforcées par celles ci-après :

- La coplanéité des montants devra être vérifiée entre montants adjacents avec un écart maximal admissible de 2 mm ;
- L'ossature devra faire l'objet, pour chaque chantier, d'une note de calcul établie par l'entreprise de pose assistée, si nécessaire, par le titulaire la Société Alucoil.
- L'entraxe des montants est au maximum de 1350 mm.

Fenêtres

Lorsque les fenêtres seront prévues être posées dans le plan du bardage, celles-ci devront être de conception monobloc ou montées dans des précadres. Sur COB entre 10 et 18m de hauteur, les cassettes doivent être calepinées et ajustées aux dimensions du trumeau et de manière à faire filer leurs ossatures (oméga) avec celles du niveau supérieur (cf. fig. 24 et 22).

1.2.3.2. Conditions de mise en œuvre

Compartimentage de la lame d'air

Un compartimentage vertical de la lame d'air doit être prévu en angle des façades adjacentes ; ce cloisonnement, réalisé en matériau durable (tôle d'acier galvanisé Z 275 ou d'aluminium par ex.) devra être propre, sur toute la hauteur du bardage, à s'opposer à un appel d'air latéral.

L'épaisseur de la lame d'air devra être au moins égale à 20mm. On veillera à ce que cette épaisseur soit respectée au droit des joints horizontaux ou d'éventuels renforts rapportés.

Dilatation

Les réglages des jeux nécessaires à la libre dilatation des cassettes ne devront cependant pas permettre un jeu (excentrement) supérieur à 5 mm en fond d'encoche.

Un rivet ou une vis conforme au paragraphe 2.4.4.2 du Dossier Technique sera mis en œuvre en partie haute de la cassette.

Pare-pluie et ossature

Sur paroi de COB on se conformera aux prescriptions du NF DTU 31.2 de 2019 et sur parois support en panneau bois lamellé croisé (CLT), visés par le Groupe Spécialisé n°3, au § 2.10 du Dossier Technique et aux figures 1 et 10 à 25.

Le pare-pluie sera recoupé tous les 6 m pour l'évacuation des eaux de ruissellement vers l'extérieur.

L'ossature sera recoupée tous les niveaux.

Le pontage des jonctions entre montants successifs par les cassettes Larson est exclu.

Les tasseaux seront posés au droit des montants de la COB selon le § 2.10.2 du Dossier Technique.

Sur COB entre 10m et 18m de hauteur, les cassettes doivent être calepinées aux dimensions du trumeau et de manière à faire filer leurs ossatures (oméga) avec celles du niveau supérieur (cf. fig. 18, 22 et 24).

Appréciation globale

L'utilisation du procédé dans le domaine d'emploi accepté (cf. paragraphe 1.2.1) est appréciée favorablement.

1.3. Remarques complémentaires du Groupe Spécialisé

Comme pour les produits de la même famille, selon le but recherché, limitation des déformations ou augmentation de la résistance, on pourra choisir de faire varier la conformation des cassettes au niveau :

- · des formats;
- d'une déformation des cassettes pris égale à :
 - Au centre du carré des encoches centrales : 1/50ème de la diagonale et < 30 mm (cf. tableaux 7 et 8),
 - Au centre du carré des encoches centrales : 1/30^{ème} de la diagonale et < 50 mm (*cf. tableaux 9 et 10*).
- du nombre des encoches d'accrochage.

Lors de la manipulation et la mise en œuvre du système, l'entreprise de pose devra prendre soin des rives latérales comportant les encoches, qui sont particulièrement sensibles aux chocs.

Les éléments suivants ne sont pas couverts par cet Avis Technique :

- Une ossature métallique différente ;
- Le cintrage des cassettes (sauf habillage des angles) ;
- Les formes complexes de cassettes (autres que carrées, rectangulaires et planes);
- La perforation des cassettes ;
- Le collage des retours latéraux au niveau de la zone de fraisage.

La continuité du plan d'étanchéité à l'eau au droit des baies est finalisée par le pare-pluie conformément aux NF DTU 31.2 et 36.5. Aussi, les dispositions prévues pour la réalisation des habillages de baies, décrites dans le Dossier Technique, ne dispensent pas le concepteur de la paroi de s'assurer que l'étanchéité de la paroi de COB support de bardage est apte à permettre la mise en œuvre du procédé larson® cassette entre 10 et 18 m de hauteur.

Le respect du classement de réaction au feu induit des dispositions techniques et architecturales à respecter, pour satisfaire la Réglementation incendie en vigueur, qui ne sont pas illustrées dans les détails du Dossier Technique. Le procédé ne dispose pas d'éléments permettant de préciser les dispositions décrites dans l'IT249 de 2010 dans les bâtiments pour lesquels cette instruction technique est appliquée.

Les raidisseurs verticaux ont une contribution mécanique

Les raidisseurs horizontaux ont pour rôle de limiter la flèche.

Le façonnage et le collage des raidisseurs des panneaux LARSON en cassette est réalisé par des transformateurs certifiés pour cette opération par le CSTB. Il est délivré à chaque transformateur un certificat sissant le produit à façonner et à coller

les raidisseurs qui reçoit un marquage supplémentaire du transformateur. Le classement de réaction au feu des cassettes avec raidisseurs collés n'a pas été fourni. Il conviendra de justifier au cas par cas le respect de la réglementation incendie.

Cet Avis Technique est assujetti à une certification de produits **p** portant sur les panneaux/cassettes Larson.

2. Dossier Technique

Issu du dossier établi par le titulaire

2.1. Données commerciales

2.1.1. Coordonnées

Titulaire(s): Société Alucoil SA

Poligono Industrial de Bayas C/Ircio, Parcelas R72-R77

SP-09200 Miranda de Ebro (Burgos)

Tél.: 947 33 33 20 Fax: 947 32 49 13

Internet: www.alucoil.com

Distributeur(s): Société Aliberico France

2 rue Maryse Bastié FR-69500 BRON Tél.: 04 77 57 49 13

Internet: www.aliberico.com

2.2. Description

Le système **larson**[®] Cassette est un système de bardage rapporté à base d'éléments façonnés en forme de cassettes à partir de panneaux composites **larson**[®]

Ces panneaux sont fabriqués par le biais d'un processus industriel linéaire qui consiste à joindre, de manière continue, une âme de polyéthylène (PE) une âme avec l'adjonction d'une charge minérale (FR) ou une âme minérale (A2) et deux feuilles d'aluminium

Le système d'habillage de façade ventilée s'obtient en suspendant et en fixant les cassettes à des pièces de suspension LC-3 (cf. fig. 8) elles-mêmes fixées aux montants (profilés d'aluminium extrudés référencés LCH-1), ces derniers étant ancrés à la structure porteuse à habiller.

L'aspect décoratif des cassettes résulte du pré-laquage des surfaces de la feuille d'aluminium placées sur le côté visible de l'habillage.

Une isolation thermique est souvent disposée entre l'ouvrage et le revêtement, associée à une lame d'air circulant entre le pare-pluie et la face arrière des cassettes.

2.3. Domaine d'emploi

- Mise en œuvre du bardage rapporté sur parois planes et verticales, neuves ou préexistantes, de Constructions à Ossature Bois (COB) conformes au NF DTU 31.2 de 2019, et sur panneaux bois lamellé-croisé porteur en façade CLT (Cross Laminated Timber) validé par un Avis Technique du Groupe Spécialisé N°3, situées en étage et rez-de-chaussée protégé des risques de chocs, limitée à :
 - hauteur 18 m maximum (+ pointe de pignon) en zones de vent 1, 2, 3 en situations a, b et c,
 - hauteur 10 m maximum (+ pointe de pignon) en zone de vent 4 et/ou en situation d,

en respectant les prescriptions du § 2.10 du Dossier Technique et les figures 1 et 10 à 24.

Les situations a, b, c et d sont définies dans le NF DTU 20.1 P3.

- Exposition au vent correspondant à des pressions et dépressions sous vent normal selon les règles NV65 modifiées, conformément tableaux aux 7 à 10 du Dossier Technique.
- Le procédé de bardage rapporté **larson**® Cassette peut être mis en œuvre en zones de sismicité et bâtiments suivant le tableau ci-dessous (selon l'arrêté du 22 octobre 2010 et ses modificatifs) :

Tableau 2 - Pose sur paroi de COB/CLT en zone sismique

Zones de sismicité		Classes de catégories d'importance des bâtiments					
		I	II	III	IV		
	1	×	×	×	×		
	2	×	×	0			
3		×	0				
	4	×	9				
×	Pose autorisée sans	disposition particulière	selon le domaine d'em	iploi accepté			
0	Pose autorisée sans disposition particulière selon le domaine d'emploi accepté pour les établissements scola à un seul niveau (appartenant à la catégorie d'importance III) remplissant les conditions du paragraphe 1.1 des Règles de Construction Parasismiques PS-MI 89 révisées 92 (NF P06-014),						
2		plissant les conditions o		nploi accepté pour les bât s Règles de Construction			
	Pose non autorisée						

Pour des hauteurs d'ouvrage ≤ 3,5 m, la pose en zones sismiques du procédé de bardage rapporté larson® Cassette est autorisée sans disposition particulière, quelles que soient la catégorie d'importance du bâtiment et la zone de sismicité (cf. Guide ENS).

2.4. Eléments et matériaux

2.4.1. Cassettes

Les cassettes sont réalisées à partir des panneaux **larson**® grâce à des coupes, fraisages, poinçonnages et pliages qui permettent de mettre en forme, quatre bords tombés qui, joints dans les coins par un éclissage en aluminium 20/10e riveté (*cf. fig.6*), forment une cassette parallélépipédique rectangulaire plane dotée d'un contre-pli en partie supérieure. Les dimensions des cassettes sont indiquées aux tableaux 7 à 10.

Tableau 3 - Dimensions des cassettes

Forting	Cassettes sans raidisseur	Cassettes avec raidisseurs
Epaisseur (mm)	Dimensions L x H (mm)	Dimensions L x H (mm)
	1 200 X 900	3 400 x 1 350
4	1 350 x 850	1 200 x 1 800
4	900 x 1 200	1 800 x 1 200
	850 x 1 350	1 350 x 3 400

La distance maximale entre les encoches ne doit pas dépasser 500mm. La distance maximale, entre le bord supérieur de la cassette et la première encoche est de 65mm, entre la dernière encoche est le bord inférieur de la cassette est de 100mm.

2.4.2. Panneaux

Les panneaux **larson®** sont constitués d'un complexe associant deux tôles en alliage d'aluminium d'épaisseur 0,5 mm à une âme en polyéthylène (PE), une âme avec l'adjonction d'une charge minérale (FR) ou une âme minérale (A2) d'épaisseur 3mm. Les panneaux sont livrés avec une feuille de caoutchouc chloré qui protège la surface laquée pendant leur transformation et leur mise en œuvre.

Spécifications des panneaux LARSON					
	Epaisseur : 4,00mm				
Laguage DVDE Varan ou HOD de différentes coulours	Largeur standard : 1000, 1250 et 1500mm				
Laquage PVDF Kynar ou HQP de différentes couleurs	Longueur standard: 3200, 4000 et 5000mm				
	Longueur min/max ^(*) : 2000/8000mm				

^(*) Les modèles ayant fait l'objet d'essais de résistance à la charge due au vent sont définies dans les tableaux 7 à 10.

- Masse surfacique des panneaux :
 - larson® PE: 5,56 kg/m²
 larson® FR: 7,78 kg/m²
 - larson® A2 : 8,25 kg/m²
- Tolérance de fabrication (en mm)
- Epaisseur du panneau : 0 / + 0,2mm
- Largeur : 0 / + 2,5mm
- Longueur : 0 / + 20mm
- Différence entre diagonales : ± 3mm
- Epaisseur de l'aluminium sur chaque bobine
 - Epaisseur nominale: 0,5mm
 - Tolérance : ± 0,04mm
- Epaisseur du revêtement sur chaque bobine
 - Epaisseur PVDF 2 couches + Coastal Primer : 31µm
 - Tolérance : ± 4μm
 - Epaisseur PVDF 3 couches + Coastal Primer : 44µm
 - Tolérance : \pm 6 μ m. - Epaisseur HQP : 23 μ m
 - Tolérance : $\pm 4 \mu m$.
- Aspects et coloris
 - Face vue plane avec prélaquage PVdF 2 couches + Coastal Primer ou PVdF 3 couches + Coastal Primer ou HQP:
 - PVdF 70 % kynar 500 bicouche 31µm
 - PVdF 70 % kynar 500 tricouche 44µm
 - HQP (High Quality Polyester) 23µm

Le choix de la nature du revêtement tiendra compte du type d'atmosphère selon le tableau 4 en fin de dossier. Les tôles sont en alliage EN AW 3000/5000 (AW 5005 ou 3005 ou 3105) conforme à la norme NF EN 485-2.

2.4.3. Raidisseurs collés

Des raidisseurs collés sur cassettes planes rectangulaires à l'aide d'une colle à base de silicone système SikaTack®Panel-50 avec son activateur Sika®Activator 205 et son primaire SikaTack® Panel Primer et fixés mécaniquement dans les retours peuvent être utilisés dans les cas suivants :

- Charge de vent normal dépassant les valeurs des tableaux 7 à 10, dans la limite d'une charge de vent normal (dépression) de 1 700 Pa.
- Dimensions des cassettes dépassant les formats des tableaux 7 à 10 sont limitées à :

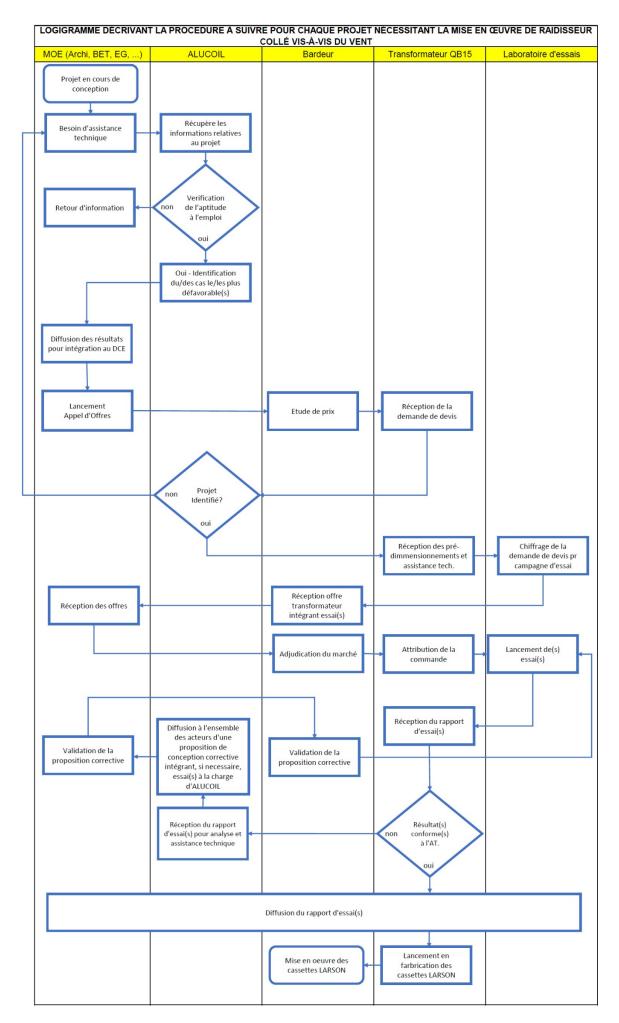
Largeur : 2 m maxiLongueur : 4 m maxi

- Elancement < 2

Pour chaque projet pour lequel l'utilisation de raidisseurs collés sera nécessaire, un essai expérimental selon le protocole du cahier du CSTB 3517 devra être réalisé par le transformateur certifié après validation du procédé par le bureau de contrôle. Le cas le plus défavorable et/ou dimensionnant du projet sera identifié par Alucoil suivant les dimensions maximales du calepinage souhaité et des zones de vents (angles ou parties courantes) pour chaque type de pose de la cassette verticale et

horizontale, puis avec l'assistance technique conjointe d'ALUCOIL et du transformateur certifié $\stackrel{oldsymbol{\square}}{=}$, un prédimensionnement sera réalisé afin de définir les configurations à tester (nombres d'encoches, d'appuis, de raidisseurs, ...).

Critères de dimensionnement retenus pour la définition de la valeur de la charge admissible de vent normal selon les NV 65 modifiées :


- Déformation maximale sous vent normal au centre du carré des encoches centrales < 1/50^{ème} de la diagonale et < 30 mm ou < 1/30^{ème} de la diagonale et < 50 mm (à définir suivant les Dispositions Particulières du Marché)
- Coefficient de sécurité sur ruine constatées :
 - Egale à 3 sur la rupture des encoches.
 - Egal à 3,5 du décollement face intérieure/raidisseur ou décohésion du noyau.
 - Egal à 3 sur la déformation irréversible des rives horizontales pliées haute ou basse.
 - Egal à 3,5 sur la valeur de ruine par un arrachement du rivet ou de la platine d'éclissage (utilisée pour l'assemblage des coins des cassettes).

Raidisseur collé horizontal

Il s'agit d'un profilé en aluminium (30mm x 45mm) d'épaisseur 1,3 et 1,65 mm (*cf. fig. 5*), doté d'une « alvéo-vis ». Le raidisseur est vissé au travers du panneau dans « l'alvéo-vis » afin de pouvoir être fixé mécaniquement aux côtés de la cassette et collé au SikaTack®Panel-50 sur la face intérieure de la cassette (*cf. fig. 5 et 9bis*). Son rôle est de limiter la flèche de la face vue de la cassette.

Raidisseur collé vertical

Il s'agit d'un raidisseur en panneaux **larson**® ou en aluminium 20/10^e alliage EN AW 5754 H11 selon NF EN 755-2 possédant des encoches nécessaires à l'accroche sur les pièces LC-3. Le raidisseur est riveté dans les plis horizontaux haut et bas de la cassette à l'aide d'un rivet AP14-S-5,0x12 de chez SFS intec et collé au SikaTack®Panel-50 sur la face intérieure de la cassette (cf. fiq.3 et 9). Son rôle est de limiter la flèche de la face vue de la cassette et d'ajouter des encoches d'accrochage.

2.4.4. Tasseaux et liteaux en bois

Les composants de l'ossature sont conformes aux prescriptions du Cahier du CSTB 3316-V2, renforcées par celles-ci-après :

- Tasseaux verticaux de section 27 x 45 mm et liteaux horizontaux de section 50 x 75 mm ayant une résistance mécanique correspondant au moins à la classe C18 selon la norme NF EN 338, de durabilité naturelle ou conférée de classe d'emploi 3b selon le FD P 20-651.
- Au moment de leur mise en œuvre, les tasseaux et les liteaux en bois devront avoir une humidité cible maximale de 18%, avec un écart entre deux éléments au maximum de 4 %. Le taux d'humidité des éléments doit être déterminé selon la méthode décrite par la norme NF EN 13183-2 (avec un humidimètre à pointe).

2.4.5. Lisses métalliques

Les composants de l'ossature sont conformes aux prescriptions du *Cahier du CSTB* 3194_V3. Cette ossature est de conception bridée. L'ossature sera considérée en atmosphère extérieure protégée et ventilée.

Les lisses seront de section oméga ou tubes de longueur 3 m maximum.

2.4.5.1. Lisse acier

- Acier de nuance S 220 GD minimum.
- En tôle d'acier galvanisé d'épaisseur 1,5 mm mini.
- Oméga de section 40 x 40 mm avec ailes de 20 mm mini (soit une largeur vue de 80 mm et une profondeur de 40 mm).

2.4.5.2. Lisse aluminium

- Aluminium de série 3000 minimum et présentant une limite d'élasticité Rp0,2 supérieure à 110 MPa.
- D'épaisseur 2,5 mm minimum.
- Oméga de section 40 x 40 mm avec ailes de 20 mm mini (soit une largeur vue de 80 mm et une profondeur de 40 mm)
- Aluminium extrudé de série 6000.
- D'épaisseur 2,5 mm minimum.
- Tube de section 40 x 40 mm

2.4.6. Montant d'ossature

2.4.6.1. Profilés et accessoires

Cette ossature est constituée de profilés d'aluminium extrudé en forme d'oméga.

Le fabricant définit deux types de profilés :

Profilé montant LCH-1 (cf. fig. 7)

- Alliage EN AW 6063 T5 ou 6060 T5 selon la norme NF EN 755-2
- Epaisseur nominale du profilé 2,5 mm
- Longueur maximale de fabrication : 6 m
- Masse linéaire : 0,911 kg/m
- · Finition naturelle
- Module élastique : 70 000 MPa
- Inertie du profilé par rapport à l'axe de charge :
 - $I = 6,03 \text{ cm}^4$
 - $W = 3,11 \text{ cm}^3$

Platine d'éclissage LCR (cf. fig. 6)

- Utilisé pour l'assemblage des coins des cassettes
- Tôle aluminium de 2 mm d'épaisseur
- Alliage EN AW 3003-H16 selon NF EN 485-2

Renforts de suspension LCR-40 et platine d'éclissage (cf. fig. 6bis)

- Utilisé pour le renforcement des encoches des bords tombés verticaux et l'assemblage des coins des cassettes
- Tôle aluminium de 3 mm d'épaisseur
- Alliage EN AW 3003-H16 selon NF EN 485-2

2.4.6.2. Assemblage/accrochage des cassettes

Pièce de suspension LC-3 (cf. fig. 8)

- Alliage EN AW 6063 T5 ou 6060 T5 selon la norme NF EN 755-2
- Epaisseur nominale du profilé 2,5 mm
- Masse linaire: 0,925 kg/m
- Finition naturelle

• Equipé d'un caoutchouc d'élastomère thermoplastique (PRODENE 123) d'épaisseur = 2 mm

Rivets de fixation

- Utilisé pour l'assemblage de la cassette dans les coins avec la platine LCR et la pose des renforts de suspension LCR-40. Ces rivets se caractérisent par un corps en aluminium et un mandrin en acier inoxydable, Ø 4.8 x 12.5 mm. La largeur de la tête est de 9.5 mm, possédant :
 - Une valeur caractéristique à l'arrachement au moins égale à 95 daN.
 - Une valeur caractéristique au cisaillement au moins égale à 110 daN,

Exemple de référence : rivet ASC-D-4.8x12.5 de chez SFS intec.

D'autres rivets de dimensions identiques et de caractéristiques mécaniques supérieures ou égales peuvent être utilisés.

- Utilisé pour le raccordement de la pièce de suspension LC-3 au profilé LCH-1 ou LC2. Ces rivets se caractérisent par un corps en aluminium et un mandrin en acier inoxydable, Ø 5 x 12 mm. La largeur de la tête est de 14 mm, possédant :
 - Une valeur caractéristique à l'arrachement au moins égale à 95 daN.
 - Une valeur caractéristique au cisaillement au moins égale à 110 daN,

Exemple de référence : rivet AP14-S-5,0x12 de chez SFS intec.

D'autres rivets de dimensions identiques et de caractéristiques mécaniques supérieures ou égales peuvent être utilisés.

Vis autoforeuse à tête hexagonale

- Utilisée pour le raccordement de la pièce de suspension LC-3 au profilé LCH-1 ou LC-2 ainsi que pour la fixation en tête de cassette dans le contre-pli. Vis autoperceuse à tête hexagonale en acier inoxydable, Ø 4,8 x 19 mm. La largeur de la tête est de 10 mm possédant :
 - Une valeur caractéristique Pk à l'arrachement au moins égale à 95 daN, conformément à la norme NF P 30-310.
 - Une valeur caractéristique au cisaillement au moins égale à 110 daN.

D'autres vis de dimensions identiques et de caractéristiques mécaniques supérieures ou égales peuvent être utilisées.

Exemple de référence : vis SDA5-H13-5.5x20 de chez SFS intec.

2.4.7. Eléments d'angle (cf. 18, 18bis, 19, 19bis et 20)

Les angles de la façade, tant entrants que sortants, sont réalisés à l'aide d'éléments façonnés obtenus par pliage (rayon ext. ≈ 2mm) ou par roulage selon un arrondi de rayon minimum égal à 150mm.

Le dimensionnement de ces éléments tiendra compte des contraintes de mise en œuvre et de manutention relatives à ces éléments

Les dimensions maximales admises seront 300 x 300 mm.

Pour les angles rentrants : réalisation d'un fraisage pour un angle de 90° en laissant 0,5 mm de tôle extérieure aluminium + 0.3 mm d'âme

En partie haute et basse de la cassette, afin de combler le manque de matière, un carré de panneaux **larson®** sera ajouté et fixé par une équerre plate en aluminium 20/10ème. Ces pièces sont collées et rivetées afin d'assurer leur fixation.

2.4.8. Profilés d'habillage complémentaires

Profilés d'habillages métalliques usuellement utilisés pour la réalisation des points singuliers des bardages traditionnels. La plupart figurent au catalogue de producteurs spécialisés, d'autres sont à façonner à la demande en fonction du chantier. Ils doivent répondre aux spécifications ci-après :

- Tôle d'aluminium oxydée anodiquement classe 15 ou 20 selon la norme NF A 91-450 ou prélaquée selon la norme NF EN 1396, épaisseur 10/10 à 15/10ème mm ;
- Tôle d'acier galvanisé au minimum Z 275 prélaquée selon la norme NF P34-301.

2.4.9. Isolant

Isolants certifiés ACERMI, conformes aux prescriptions du Cahier du NF DTU 31.2 de 2019.

2.5. Fabrication

2.5.1. Fabrication des panneaux

Les panneaux **larson**® sont fabriqués par l'unité d'Alucoil SA spécialisée dans la fabrication de matériaux composites aluminium, située à Miranda de Ebro en Espagne.

La commercialisation des panneaux larson® est assurée pour la France par ALIBERICO France.

La fabrication des panneaux obéit au procédé suivant :

- Extrusion d'une âme en polyéthylène (PE) ou une âme avec l'adjonction d'une charge minérale (FR ou A2) par chauffage et pressage de grains solides de résine thermoplastique.
- Cette lamelle suit une chaîne de production continue pour recevoir des deux côtés, par adhérence, des feuilles en alliage d'aluminium, pré-laquées et de même largeur.
- Obtention de panneaux par découpe en fin de chaîne.

2.5.2. Fabrication des cassettes

Les cassettes sont réalisées à partir du calepinage préalable de la façade à revêtir. La préparation des cassettes est effectuée par des entreprises spécialisées équipées des outillages spécifiques.

On procède au traçage et à la découpe de la surface utile.

Les découpes des angles et des encoches d'accrochages s'effectuent par poinçonnage ou par fraisage.

Pour le pliage des retours selon une arête, on réalise un fraisage en face cachée du panneau au droit du pli.

Les cassettes sont ensuite mises en forme, leur assemblage est finalisé par la pose des platines LCR ou LCR-40 aux 4 coins.

On effectue finalement le renforcement des boutonnières si nécessaires, à l'aide des pièces LCR-40.

Le façonnage des panneaux LARSON en cassettes est réalisé par des transformateurs certifiés pour cette opération par le CSTB.

Il est délivré à chaque transformateur un certificat B visant le produit à façonner.

Les cassettes fabriquées sont maintenues par un film plastique et envoyées dans des palettes, chevalets ou caisses de bois dûment protégées.

2.6. Contrôles de fabrication

Le système de qualité d'ALUCOIL a reçu la certification AFNOR et IQNET pour conformité avec la norme ISO 9001.

Les contrôles, qui commencent dès livraison de la matière première, visent chacune des phases du processus de fabrication.

Il existe une procédure interne d'instruction technique pour la qualité de réception des matières premières.

Le processus d'autocontrôle comprend les phases suivantes :

2.6.1. Contrôles des matières premières

Caractéristiques de l'alliage

Le contrôle de l'alliage utilisé EN AW 3000/5000 (AW 5005 ou 3005 ou 3105), reporté sur les certificats de qualité délivrés par le fabricant, lesquels doivent respecter les tolérances définies par les normes NF EN 485-2 (relative aux caractéristiques mécaniques) et NF EN 573-3 (relative à la composition chimique).

Matières premières de l'âme

Le contrôle du produit de base et des ajouts pour fabrication de l'âme de résine thermoplastique avec ou sans charges minérales (FR) porte sur chaque livraison des fournisseurs selon les spécifications internes afférentes au produit.

Lamelles de revêtement

- Epaisseur de l'aluminium sur chaque bobine
- Epaisseur nominale: 0'5mm,
- Tolérance : ± 0'04mm.
- Epaisseur du revêtement sur chaque bobine
 - Epaisseur PVDF 2 couches + Coastal Primer : $31\mu m$
 - $_\square$ Tolérance : ± $4\mu m$
 - Epaisseur PVDF 3 couches + Coastal Primer : 44µm
 - Tolérance : ± 6μm
 Epaisseur HQP : 23μm
 - □ Tolérance : ± 4μm
- Brillance du revêtement

Un contrôle selon la procédure interne de réception des matières premières est effectué sur chaque bobine.

• Coordonnées chromatiques

Un contrôle selon la procédure interne de réception des matières premières est effectué sur chaque bobine.

2.6.2. Contrôles sur les panneaux

- Contrôles dimensionnels (longueur, largeur, équerrage, planéité) : toutes les 2 heures,
- Contrôles d'aspect visuels : tous les panneaux,
- Résistance au pelage après conditionnement chaleur et eau : 1 fois par mois,
- Epaisseur : toutes les 2 heures,

Caractéristique certifiée 🕮 : 4 mm (-0 ; +0,2 mm)

• Résistance au pelage suivant la norme ASTM D903 : 1 fois par semaine :

Caractéristique certifiée 🕮 :

- Panneaux PE, FR: pelage selon la norme ASTM D903: > 4N/mm.
- Panneaux A2 : pelage selon la norme ASTM D903 : > 3N/mm

2.6.3. Contrôles sur les cassettes

Les principaux contrôles portent sur la vérification des écarts dimensionnels par rapport aux tolérances prescrites :

· Format, équerrage ;

- Angle de pliage et/ou cintrage ;
- Usinage des encoches (profondeur de fraisage).

Tolérances dimensionnelles des panneaux découpés et cassettes :

• Cassettes façonnées : + 1 mm sur dimensions hors tout (longueur d'encombrement).

Contrôle du respect du cahier des charges et du plan qualité de collage des renforts, conformes aux exigences QB15 avec les transformateurs certifiés QB15 visant les opérations de collage de raidisseurs dans leurs certificats.

2.7. Identification du produit

Les panneaux **larson**® bénéficiant d'un certificat **s** sont identifiables par un marquage conforme aux « Exigences particulières de la Certification **d** des bardages rapportés, vêtures et vêtages, et des habillages de sous-toiture » et comprenant notamment :

Sur le produit au dos des panneaux

- Le logo **B**
- Le numéro de l'usine, le numéro de produit
- Le repère d'identification de la fabrication

Sur les palettes de panneaux

• Le logo 🍱

Le numéro du certificat

- Le nom du fabricant, une identification de l'usine de production
- L'appellation commerciale du système et l'appellation commerciale du produit
- Le numéro de l'Avis Technique

Outre la conformité au règlement, le marquage comporte :

Sur l'étiquette

- Le numéro de décor
- Le format, l'épaisseur et la quantité

Sur les cassettes après transformation

- Le logo
- Le numéro du certificat des transformations
- Le repère du lot de transformation

Sur les palettes de cassettes

- Le logo 🅯
- Le numéro du certificat
- Le nom du fabricant, une identification de l'usine de production
- L'appellation commerciale du système et l'appellation commerciale du produit
- Le numéro de l'Avis Technique.

2.8. Fourniture et assistance technique

La société ALUCOIL assure la fourniture du système complet, à l'exclusion de l'isolant, , des chevilles et fixations des profilés. ALUCOIL met à la disposition de l'entreprise de pose toutes les informations nécessaires à la mise en œuvre des cassettes larson®.

La mise en œuvre du système doit être effectuée par des entreprises spécialisées, avec l'assistance technique d'ALUCOIL SA, lesquelles entreprises veilleront à ce que l'utilisation du système respecte les conditions et les domaines d'application indiqués dans ce présent document.

2.9. Mise en œuvre de l'isolation thermique et de l'ossature

2.9.1. Isolation thermique

La mise en œuvre de l'isolant doit être conforme au NF DTU 31.2 de 2019 ou aux Avis Techniques CLT valides du Groupe Spécialisé 3.

2.9.2. Mise en œuvre de l'ossature tertiaire

La mise en œuvre de l'ossature aluminium sera conforme aux prescriptions du *Cahier du CSTB* 3194_V3, renforcées par celle ci-après :

- La coplanéité des montants doit être vérifiée entre montants adjacents avec un écart admissible maximal de 2mm,
- L'entraxe des ossatures sera conforme aux tableaux 7 à 10 selon le format des panneaux.
- La conception de l'ossature est bridée.

2.10. Mise en œuvre

2.10.1. Principes généraux de pose

2.10.1.1. Généralités et mise en œuvre

La paroi support est conforme au NF DTU 31.2 de 2019 ou visée par un Avis Technique du Groupe Spécialisé n°3 (CLT).

Des tasseaux verticaux de section mini 27×45 mm, conformes au § 2.4.4 sont fixés, selon le cas au droit des montants de COB suivant un entraxe de 645 mm maxi ou dans les murs en panneaux CLT (cf. Tableau 5 à 10).

Un pare-pluie conforme au NF DTU 31.2 de 2019 sera disposé sur la face extérieure de la paroi de COB ou paroi de CLT (isolation par l'intérieur), sous les tasseaux verticaux. Le pare-pluie est recoupé tous les 6 m pour l'évacuation des eaux de ruissellement vers l'extérieur. Ce pare-pluie aura une résistance aux UV de 5000 h selon la norme NF EN 13589-2.

Une ossature secondaire horizontale est ensuite fixée aux montants de COB ou aux panneaux CLT à l'aide de vis Etanco Goldovis Bois TH10 dont la valeur caractéristique à l'arrachement est de de 659 daN selon la NF P30-310 ou vis à bois de longueur adaptée et de caractéristiques mécaniques supérieures ou égales. Ces fixations devront être choisies compte tenu des conditions d'exposition au vent et de leur résistance à l'arrachement. L'entraxe entre lisse ou liteau horizontal sera de 600 mm maximum et de conception bridée, dans le cas où l'ossature est en métallique (acier ou aluminium). Toutefois, le dimensionnement et l'entraxe de l'ossature secondaire horizontale pourront être vérifiées et optimisés par note de calcul établie conformément au Cahier du CSTB 3194_V3 dans le cas où l'ossature est en acier ou en aluminium et établie conformément au cahier du CSTB 3316_V3 dans le cas où l'ossature est en bois.

L'ossature tertiaire, conforme aux \S 2.4.6 et 2.9.2 est fixée directement sur l'ossature horizontale décrite ci-dessus, conformément aux \S 2.9.2 et 2.10.

Si l'ossature secondaire est en bois, alors l'ossature tertiaire doit être fixée sur l'ossature secondaire à l'aide de vis Goldovis Bois TH10 (ou autre vis à bois de caractéristiques mécaniques supérieures ou égales).

Si l'ossature secondaire est métallique, alors il faut utiliser la vis Etanco Goldovis 1,5 TH10 (valeur caractéristique à l'arrachement de 236 daN) ou le rivet SFS ASC-D-4,8xL (valeur caractéristique à l'arrachement de 277 daN).

D'autres fixations de caractéristiques mécaniques supérieures ou égales peuvent être utilisées.

Les cassettes larson® sont ensuite fixés sur l'ossature tertiaire conformément au § 2.10.6.

Les tasseaux et l'ossature tertiaire sont fractionnés à chaque plancher. Le pontage des jonctions entre montants successifs par les cassettes **larson**® est exclu.

Les figures 1 et 10 à 15 illustrent les dispositions minimales de mise en œuvre sur COB.

2.10.2. Principes de mise en œuvre sur COB

La paroi support de COB est conforme au NF DTU 31.2 de 2019.

En situations a, b et c, les panneaux de contreventement de la COB peuvent être positionnés coté intérieur ou coté extérieur de la paroi.

En situation d, si les panneaux de contreventement de la COB ont été positionnés du côté intérieur de la paroi, des panneaux à base de bois sont obligatoirement positionnés coté extérieur de la paroi.

Le pontage des jonctions entre montants successifs par les cassettes larson® est exclu.

Le pare-pluie est recoupé tous les 6 m pour l'évacuation des eaux de ruissellement vers l'extérieur.

Les figures 15 à 20 illustrent les dispositions minimales de mise en œuvre sur COB.

L'ossature est fractionnée à chaque plancher.

2.10.3. Conception d'une paroi en CLT

En fonction du positionnement de l'isolation, en intérieur ou en extérieur, les éléments constituant la paroi complète ainsi que leur ordre de mise en œuvre sont donnés ci-après :

2.10.3.1. Isolation thermique par l'intérieur

- Doublage en plaques de plâtre selon NF DTU 25.41 ;
- Vide technique ;
- Pare-vapeur avec Sd ≥ 90 m (sauf prescriptions différentes dans l'Avis Technique du procédé CLT, délivré par le GS3);
- Isolant intérieur ;
- Paroi CLT ;
- Pare-pluie 5000 h UV (selon la norme NF EN 13589-2), ;
- Ossature fixée à la paroi de CLT (sans patte-équerre) selon le § 2.11.1;
- Lame d'air ventilée sur l'extérieur ;
- Bardage.

2.10.3.2. Isolation thermique par l'extérieur

• Paroi CLT;

- Protection provisoire de la paroi de CLT avant pose de l'isolation, définie dans l'Avis Technique du GS3 ;
- Isolation extérieur (laine minérale WS et semi-rigide) supportée conformément du NF DTU 31.2 de 2019 pour les systèmes de bardage rapporté avec lame d'air ventilée ;
- Ossature fixée à la paroi de CLT (sans patte-équerre) selon le § 2.11.1;
- Lame d'air ventilée sur l'extérieur ;
- Bardage.

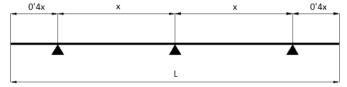
Concernant la protection provisoire :

- Soit elle est retirée avant la pose de l'isolant thermique extérieur ;
- Soit c'est un pare-pluie avec un Sd ≤ 0,18 m;
- Soit elle est inconnue, alors la résistance thermique du CLT doit être inférieure ou égale au tiers de la résistance thermique globale de la paroi complète.

2.10.4. Dispositions particulières

Les dispositions particulières de mise en œuvre à prévoir dans les cas suivants (récapitulatif en tableau 11) :

- de 10 à 18 m de hauteur (+ pointe de pignon) en zones de vent 1, 2 et 3 en situations a, b et c,
- de 6 à 10 m de hauteur (+ pointe de pignon) en zones de vent 1 à 4 en situation d,


sont:

- mise en œuvre de bavettes à oreilles en profilés métalliques préformés prolongées au-delà du plan vertical du parement,
- mise en œuvre de profilés métalliques préformés en linteau prolongés de 40 mm au-delà des tableaux des baies,
- mise en œuvre de profilés métalliques préformés sur les tableaux des baies.

Les figures 16 à 23 donnent les principes de traitement des baies selon le type de pose de la menuiserie (en tunnel intérieur ou en tunnel au nu extérieur).

2.10.5. Principes généraux de pose de l'ossature tertiaire

L'étude du calepinage des montants tiendra compte des dépressions de vent. L'entraxe maximal entre montants est déterminé soit par les largeurs, soit par les longueurs des cassettes définis dans les tableaux 7 à 10. L'espacement des fixation des profilés porteurs sur l'ouvrage sera défini de telle manière que la flèche du porteur sur l'ouvrage soit inférieure ou égale à 1/200ème de la portée dans la mesure où l'espacement est limité à 1350 mm. Le porte-à-faux des porteurs par rapport à l'axe des fixations sera limité à 0,4 de la distance entre les fixations dans la limite de 300mm maxi.

La jonction des montants s'effectue en assurant un espacement de 10mm de jeu de dilatation par éclissage bout à bout à l'aide d'une éclisse en U de longueur 160mm, fixée à un seul des montants à l'aide de deux vis auto perceuses.

L'entraxe entre profilés d'ossature est défini en fonction des charges admissibles correspondant aux flèches sous vent normal au centre des panneaux laissés au choix du maître d'œuvre, où 'I' est la diagonale de la casssette.

- La flèche est inférieure ou égale à I/30 (*) et < 50 mm, cette valeur n'entraînant pas à long terme de déformation résiduelle ou de dégradation.
- La flèche est inférieure ou égale à I/50 et < 30 mm, cette valeur n'entraînant pas à long terme de déformation résiduelle ou de dégradation.

Le choix des cassettes est réalisé à partir des tableaux 7 à 10 en fin de dossier.

- Critères de flèche sous vent normal (suivant Document Particulier du Marché)
 - Soit : Flèche au centre du panneau $< 1/50^{\rm e}$ de la diagonale et < 30 mm,
 - Soit : Flèche au centre du panneau $< 1/30^{\rm e}$ de la diagonale et < 50 mm,

2.10.6. Pose des cassettes

Les cassettes sont accrochées sur les pièces de suspension LC-3 en s'assurant que chaque encoche repose correctement sur le gainage caoutchouc.

Une fixation (rivet ou vis autoforeuse) est positionnée sur le contre-pli en partie supérieure de la cassette, au droit des ailes du profil oméga afin d'assurer l'anti-dévêtissement de la cassette.

2.10.7. Ouverture de ventilation

Une lame d'air ventilée d'au moins 20 mm est ménagée entre la surface extérieure du matériau isolant et les bords intérieurs de la cassette.

Les ouvertures permettant la ventilation de la lame d'air seront prévues en partie basse et supérieure du bardage mais également au droit des appuis et linteaux des éventuelles menuiseries.

En pied de bardage, l'ouverture est protégée par un grillage en métal fin ou en tôle performée constituant une barrière antirongeur ou par un larmier bas laissant une ouverture de 10 mm (cf. fig. 12).

En tête de bardage, l'ouverture est matérialisée par un espace d'environ 20 mm côté intérieur de l'acrotère entre la retombée de la couvertine et l'acrotère (cf. fig. 12).

2.10.8. Fractionnement de la lame d'air

Le compartimentage horizontal de la lame d'air, avec reprise sur une nouvelle entrée d'air, est réalisé tous les 18 m, à l'aide d'un profilé métallique.

Ce profilé doit posséder une goutte d'eau et vérifier :

- La retombée de la bavette sur la cassette au moins égale à 30 mm,
- Une ouverture horizontale de 10 mm ménagée entre la retombée de la bavette et la face vue de la cassette.

2.10.9. Traitement des points singuliers

Les figures 16 à 23 constituent le catalogue de solutions pour illustrer le traitement des points singuliers.

2.10.10. Sens de laquage

Les panneaux **larson**® sont des produits pré-laqués par coil-coating continu, c'est-à-dire que ce procédé induit que tout panneau possède un sens de laquage. Afin d'obtenir un effet de teinte homogène il est conseillé d'installer les cassettes dans le même sens de laquage pour éviter des différences de tonalité.

Cette donnée doit être prise en compte dès l'étape de calepinage préalable de la façade à revêtir.

2.11. Entretien et réparation

2.11.1. Entretien

Il convient d'éliminer de la façade tout objet étranger (feuilles, herbe, moisissure, etc.). On enlèvera les saletés retenues aux endroits qui ne sont pas nettoyés naturellement par l'eau de pluie, et on supprimera tout bouchon qui se serait formé dans les gouttières, les goulottes, etc, susceptible d'occasionner des débordements sur la façade.

On veillera à ce que les joints, habillages et couvre-joints de l'immeuble soient étanches à l'eau et on examinera la possible existence de défauts à certains endroits, tels que des rayures, qui peuvent entraîner une détérioration précoce de la peinture ou de corrosion de l'aluminium.

Pour obtenir une plus grande durabilité des laques, il est important de nettoyer les accumulations de saletés, de déblais, de matériaux de construction, etc. qui ne peuvent être enlevées par l'eau de pluie.

Il est recommandé d'effectuer un lavage intégral une fois par an, en respectant les consignes du fabricant.

On évitera d'utiliser des dissolvants organiques, des produits acides et alcalins très forts, ainsi que des produits qui contiennent du chlore, pour nettoyer les surfaces laquées, quelles qu'elles soient.

L'utilisation d'abrasifs forts, de brosses dures ou du nettoyage à sec peut abîmer la surface de la peinture.

2.11.2. Remplacement d'une cassette

L'unique façon de remplacer une cassette détériorée est de déplacer toutes les cassettes qui sont mises en œuvre au-dessus de cette cassette.

2.12. Résultats expérimentaux

Les panneaux composites larson® ont été développés par ALUCOIL SA et ont fait l'objet des résultats d'essais suivants :

• Essais de chocs :

Avis nº77/03 par l'Institut des Sciences de la Construction Edouardo Torroja.

• Essais d'identification :

Avis nº77/03 par l'Institut des Sciences de la Construction Edouardo Torroja

Essais de flexion :

Avis nº7213 par le Centre de Recherche Technologique CIDEMCO d'Azpeitia

• Essais Thermiques :

Avis nº7193 par le Centre de Recherche Technologique CIDEMCO d'Azpétia.

- Essais de réaction au feu :
 - Avis n°13/7185-3032 M1 Part 2 et 18/16240 Part 2 par le Centre Technologique LGAI de Barcelone : B-s1, d0 Classement non valable sur support bois

Ce rapport valide les dispositions suivantes :

- □ Cassettes à base de panneaux Larson FR
- □ Finitions HQPE, PVDF 2L COASTAL, PVDF 3L COASTAL
- □ Sur substrat de densité 680 kg/m3, d'épaisseur 12 mm de classement minimum D-s2, d0, et tous supports classes A1 et A2-s1, d0.
- LARSON A2 classé A2-s1,d0 selon rapport de classement A2-s1,d0 a été réalisée par Efectis PV n°EFR-18-001730 du 29/01/2019– établi selon les rapports de classement n° 18/17917-1716 M1, n°17/14442-971 et 14/8199-319 par APPLUS, Le classement est valable pour les conditions d'utilisation finale et avec le champs d'application suivants :
 - o Valable pour le produit décrit au paragraphe 2.2 du PV n°EFR-18-001730.
 - Valable pour une laine minérale ayant un PCS ≤ 0,0 MJ/kg.
 - o Valable pour un parement en aluminium d'une épaisseur de 0,5 mm.
- o Valable pour le système de fixation décrit au paragraphe 2.2 du PV n°EFR-18-001730.

- Valable avec une lame d'air ≥ 20 mm entre le panneau et la laine minérale.
- Valable uniquement pour une exposition côté parement aluminium «HQPE 23 μm/m2»
- Valable pour un substrat à base de bois ou tous substrat de classe A1 et A2-s1,d0 avec une masse volumique ≥ 510 kg/m3.
- Valable avec joints ouverts horizontaux et verticaux d'une épaisseur ≤ 10 mm.
- Avis nº 16/13129-1954 par le Centre Technologique LGAI de Barcelone. : E

Ce rapport valide les dispositions suivantes :

- □ Cassettes à base de panneaux Larson PE
- □ Finitions HQPE, PVDF 2L COASTAL, PVDF 3L COASTAL.
- Note de calcul établie par Alucoil « DETERMINACIÓN PODER CALORÍFICO » du 13/03/20, sur la détermination du PCS de la colle SikaTack Panel 50

En complément des informations et procès-verbaux communiqués par ALUCOIL SA, il a été effectué au CSTB les essais suivants :

- Cohésion du composite : selon les normes ASTM D 1781 et ASTM D 1876-95 : Rapport CSTB CL04-093.
- Essais au vent : Rapport CSTB CL04-089.

Les panneaux composites larson® A2 ont fait l'objet des résultats d'essais suivants :

Flexion:

- Rapport d'Essai (RE) n° 080704 réalisé par TECNALIA le 02.09.2019 → protocoles de flexion et de vieillissement réalisés sur la base du Technical Report 38 juin 2017 (TR38).
- RE n° 086531 réalisé par TECNALIA le 21.02.2012 ; protocole de vieillissement réalisé sur la base du Technical Report 38 juin 2017 (TR38) essais de flexion réalisé sur la base du référentiel 15-03 (CSTB).

Pelage

- RE nº IN-0424-M-20 du 03/03/2020, réalisé au CTME (Fundación Centro Tecnológico de Miranda de Ebro), les résultats sont détaillés dans les tableaux 1a à 1c
- RE nº 944-20 A1 de l'Institut Eduardo Torroja du 12/03/2020 (les tableaux 2a et 2b en annexe présentent les résultats bruts [sans valeurs caractéristiques])
- RE provisoire de l'Institut Eduardo Torroja du 12/05/2020 (cf. e tableau 3 en annexe);
- Rapport d'essais mené au laboratoire CARTIF de n°INFORME_03.II.50.ALUCOIL.05.19_v4 du 06/11/2019 selon EAD 210046-00-1201 Feb2018 (cf. détails du montage tableau 4 en annexe).

2.13. Références

2.13.1. Données Environnementales

Le produit LARSON système cassette ne fait pas l'objet d'une Déclaration Environnementale (DE). Il ne peut donc revendiquer aucune performance environnementale particulière.

Les données issues des DE ont notamment pour objet de servir au calcul des impacts environnementaux des ouvrages dans lesquels les procédés visés sont susceptibles d'être intégrés.

2.13.2. Autres références

Environ 1 000 000 m² du système cassette **larson**® ont été posés en France depuis 2009 sur support béton et maçonnerie. Depuis 2012, 40 000 m² ont été posés sur COB.

En France, depuis 2019, environ 1 000 m² ont été réalisés en panneaux/cassettes larson® A2.

Tableaux et Figures du Dossier Technique

Tableau 4 - Guide de choix des revêtements extérieurs en fonction des atmosphères extérieures

Natura du	Catégories selon la	Rurale	Urbaine et industrielle		Marine			Spéciale		
Nature du revêtement		e NF nolluée	Normale	Sévère	20 à 10 km	10 à 3 km	Bord de mer < 3km*	Mixte	Forts UV	Particulières
PVDF 70 % kynar 500 bi-couches	3	•	•	•				•	•	O
PVDF 70 % kynar 500 tri-couches	3	•		O		•		•	•	0
HQP**	2			O			O	O	O	O

[■] Revêtement adapté

Tableau 5 - Caractéristiques des tôles aluminium des panneaux larson®

Caractéristiques	Valeur	Norme
Epaisseur	0,5 mm	NF EN 485-2
Résistance à la traction (R _m)	mini 125MPa maxi 185 MPa	NF EN 485-2
Résistance à la flexion avec allongement $(R_{p0,2})$	mini 95 MPa	NF EN 485-2
Allongement (A ₅₀)	2%	NF EN 485-2
Module d'élasticité	70 000 MPa	_
Dilatation de l'aluminium (grad. 100°C)	2,3 mm/m	_

Tableau 6 - Caractéristiques des panneaux larson®

Counctéviationes		Valeur	Norme	
Caractéristiques	PE	FR	A2	Norme
Effort admissible sur le panneau (fyd)		80MPa	Tests CARTIF	
Adhérence des feuilles sur l'âme	> 250 N/25 mm	> 250 N/25 mm	> 250 N/25 mm	ASTM 1781
Masse combustible [MJ/m²]	121	65.5	15.6	_

O Revêtement dont le choix définitif ainsi que les caractéristiques doivent être arrêtées après consultation et accord du fabricant

^{*} Les fixations utilisées pour le bord de mer doivent être en acier inoxydable A4

^{**} utilisation non autorisée en front de mer.

Tableau 7 – Charges de vent normal (en dépression) admissibles selon les NV65 modifiées – Cassettes sans raidisseur

Critères retenus :

Déformation maximale sous vent normal au centre du carré des encoches centrales < 1/50ème de la diagonale et < 30 mm.

Coefficient de sécurité pris égale à 3,0 sur la rupture des encoches.

Dimensions L x H (mm)	Valeurs obtenues avec renfort d'encoches LCR-40 (Pa)	Valeurs obtenues sans renfort d'encoches LCR-40 (Pa)	Entraxe entre montant (mm)	Nombre d'encoches
1200 X 900	700	700	1200	3
1350 x 850	600	500	1350	3
900 x 1200	1170	1170	900	4
850 x 1350	1310	1310	850	4

Tableau 8 – Charges de vent normal (en dépression) admissibles selon les NV65 modifiées – Cassettes avec raidisseur et renfort d'encoches LCR-40

Critères retenus :

Déformation maximale sous vent normal au centre du carré des encoches centrales $< 1/50^{\rm ème}$ de la diagonale et < 30 mm.

Coefficient de sécurité pris égale à 3,0 sur la rupture des encoches.

Dimensions L x H (mm)	Valeurs obtenues (Pa)	Nombre de raidisseurs horizontaux (H) ou verticaux (V)	Entraxe entre montant (mm)	Nombre d'encoches
3400 x 1350	440	3 (V)	850	4
1200 x 1800	540	1 (H)	1200	5
1800 x 1200	735	1 (V)	900	3

Remarque: Les essais ont été réalisés avec des raidisseurs rivetés dans les plis haut/bas ou latéraux uniquement et n'ont pas été collés à la face intérieure de la cassette. La mise en place de raidisseurs est représentée en figures 24 et 24bis.

Tableau 9 – Charges de vent normal (en dépression) admissibles selon les NV65 modifiées – Cassettes sans raidisseur

Critères retenus :

Déformation maximale au centre du carré des encoches centrales de $1/30^{\text{ème}}$ de la diagonale et < 50 mm.

Coefficient de sécurité pris égale à 3,0 sur la rupture des encoches.

Dimensions L x H (mm)	Valeurs obtenues avec renfort d'encoches LCR-40 (Pa)	Valeurs obtenues sans renfort d'encoches LCR-40 (Pa)	Entraxe entre montant (mm)	Nombre d'encoches
1200 X 900	730	730	1200	3
1350 x 850	600	600	1350	3
900 x 1200	1585	1533	900	4
850 x 1350	1830	1600	850	4

Tableau 10 – Charges de vent normal (en dépression) admissibles selon les NV65 modifiées – Cassettes avec raidisseur et renfort d'encoches LCR-40

Critères retenus :

Déformation maximale au centre du carré des encoches centrales de 1/30ème de la diagonale et < 50 mm.

Coefficient de sécurité pris égale à 3,0 sur la rupture des encoches.

Dimensions L x H (mm)	Valeurs obtenues (Pa)	Nombre de raidisseur horizontaux (H) ou verticaux (V)	Entraxe entre montant (mm)	Nombre d'encoche
3400 x 1350	440	3 (V)	850	4
1200 x 1800	580	1 (H)	1200	5
1800 x 1200	1140	1 (V)	900	3
1350 x 3400	550	3 (H)	1350	8

Remarque: Les essais ont été réalisés avec des raidisseurs rivetés dans les plis haut/bas ou vissés dans les plis latéraux uniquement et n'ont pas été collés à la face intérieure de la cassette. La mise en place de raidisseurs est représentée en figures 24 et 24bis.

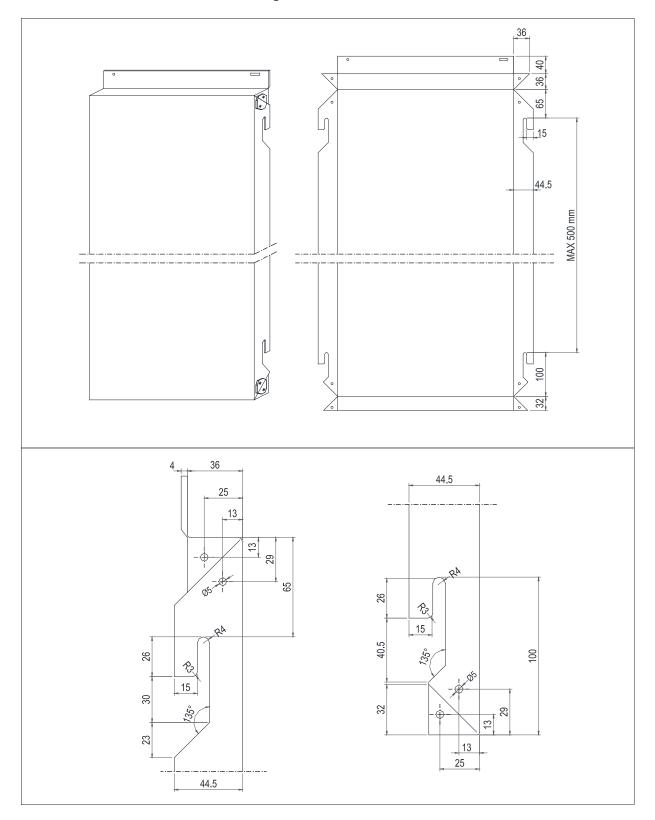
Tableau 11 - Pose sur COB / CLT - Dispositions à prévoir vis-à-vis du traitement au niveau des baies en fonction des cas

Hauteur de pose (+ pointe de pignon)	Zone de vent	Situation	Traitement au niveau des baies
≤ 6 m	1 à 4	a, b, c et d	Menuiserie bois conforme au NF DTU 36.5.
≤ 10 m	1, 2 et 3	a, b et c	Menuiserie Aluminium ou PVC sous Avis Technique ou DTA visant la pose sur COB.
≤ 10 m	1 à 4	a, b, c et d	Menuiserie bois conforme au NF DTU 36.5. Menuiserie Aluminium ou PVC sous Avis Technique ou DTA visant la pose sur COB. Mise en œuvre de bavettes à oreilles en profilés métalliques préformés
≤ 18 m	1, 2, 3	a, b et c	prolongées au-delà du plan vertical du parement. Mise en œuvre de profilés métalliques préformés en linteau prolongés de 40 mm au-delà des tableaux des baies. Mise en œuvre de profilés métalliques préformés sur les tableaux des baies.

Sommaire des figures

Fig	gure 1 – Principe de mis en œuvre du system LARSON cassette sur COB	2/
_	gure 2a – Présentation générale système LCH-1	
Fig	gure 2b – Système avec profilé LCH-1 – Vue horizontale	Erreur! Signet non défini.
Fig	gure 3 - Cassette	28
Fig	gure 4a – Raidisseur vertical collé	29
Fig	gure 4b -Fixation déportée rivetée (pour tableau pour la COB)	30
Fig	gure 5 – Raidisseur horizontal LC-RH collé	30
Fig	gure 6 – LCR - Platine d'éclissage	31
Fig	gure 6bis – LCR-40	31
Fig	gure 7 – Description du profilé LCH-1	31
Fig	gure 8 – Description de la pièce de suspension LC-3	32
Fig	gure 9 – Exemple de disposition des raidisseurs verticaux collés	32
	gure 9bis – Exemple de disposition des raidisseurs horizontaux collés	
Pose	e sur COB	Erreur! Signet non défini.
Fig	gure 10 – Pose sur COB – Raccordement ossatures secondaires horizontales	34
Fig	gure 11 – Joint horizontal fermé	35
Fig	gure 11bis – Joint horizontal fermé	36
_	gure 12 – Coupe verticale générale sur COB	
_	gure 13 – Coupe horizontale en paroi courante	
_	gure 14– Fractionnement de l'ossature au droit de chaque plancher	
_	gure 15– Fractionnement de la lame d'air et recoupement du pare-pluie	
Dis	gure 16 – Pose sur COB – Coupe sur linteau de baie, applicable sur COB (cf. § 2.11.2) ou spositions particulières du traitement des baies (Menuiserie en tunnel intérieur)	41
Fig par	gure 17 - Pose sur COB -Coupe sur appui de baie, applicable sur COB (cf. § 2.11.2) ou s rticulières du traitement des baies (Menuiserie en tunnel intérieur)	ur CLT (cf. § 2.11.3) Dispositions 42
	gure 18 – Pose sur COB – Coupe sur tableau de baie avec raidisseurs collés, applicable su f. § 2.11.3) Dispositions particulières du traitement des baies (Menuiserie en tunnel intér	
Fig par	gure 19 – Pose sur COB – Perspective, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § rticulières du traitement des baies (Menuiserie en tunnel intérieur)	2.11.3) Dispositions
Fig Dis	gure 20 – Pose sur COB – Coupe sur linteau de baie, applicable sur COB (cf. § 2.11.2) ou spositions particulières du traitement des baies (Menuiserie en tunnel au nu extérieur)	sur CLT (cf. § 2.11.3) 45
Fig Dis	gure 21 – Pose sur COB – Coupe sur appui de baie, applicable sur COB (cf. § 2.11.2) ou s spositions particulières du traitement des baies (Menuiserie en tunnel au nu extérieur)	sur CLT (cf. § 2.11.3) 46
	gure 22 – Pose sur COB – Coupe sur tableau de baie avec fixation déportée rivetée, appli r CLT (cf. § 2.11.3) Dispositions particulières du traitement des baies (Menuiserie en tun	
	gure 23 – Pose sur COB – Perspective, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § rticulières du traitement des baies (Menuiserie en tunnel au nu extérieur)	
Fig	gure 24 – Pose sur COB - Pas à pas	49
Fia	gure 25 – Pose sur COB – Cassette de jonction sur habillage tableau avec fixation déporte	ée54

Figures du Dossier Technique


Ossature primaire (COB)

Ossature secondaire horizontale

Ossature tertiaire LCH-1

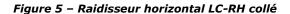
Figure 1 – Principe de mis en œuvre du system LARSON cassette sur COB

Figure 2 - Cassette

32.5 Naw Max. 500mm P

27.5

40


Figure 3 – Raidisseur vertical collé

်ဓ

27.5

GRUGEAGE POUR PLATINE D'ECLISSAGE LCR 27.5 GRUGEAGE POUR PLATINE D'ECLISSAGE LCR 27.5 0 0 0 0 0 0 0 0 500mm maxi 500mm maxi 500mm maxi H-10 H-10 0 0 40,5 40,5 40,5 40,5 0 0 0

Figure 4 -Fixation déportée rivetée (pour tableau pour la COB)

100

27.5

50

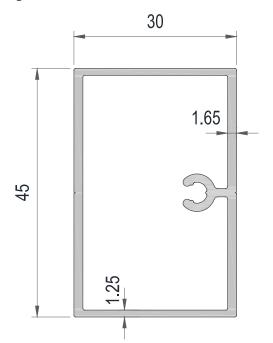
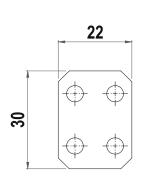



Figure 6 – LCR - Platine d'éclissage

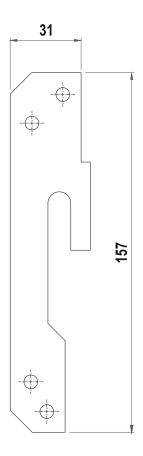
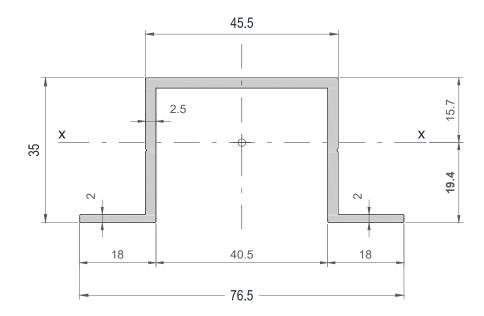



Figure 7 – Description du profilé LCH-1

Epaisseur (mm)	Poids (kg/mL)	Moment d'inertie [I _{xx}] (cm ⁴)	Module de section [W] (cm³)
2′5	0′911	6′033	3′11

Figure 8 - Description de la pièce de suspension LC-3

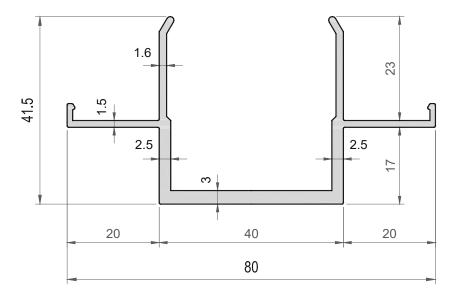


Figure 9 - Exemple de disposition des raidisseurs verticaux collés

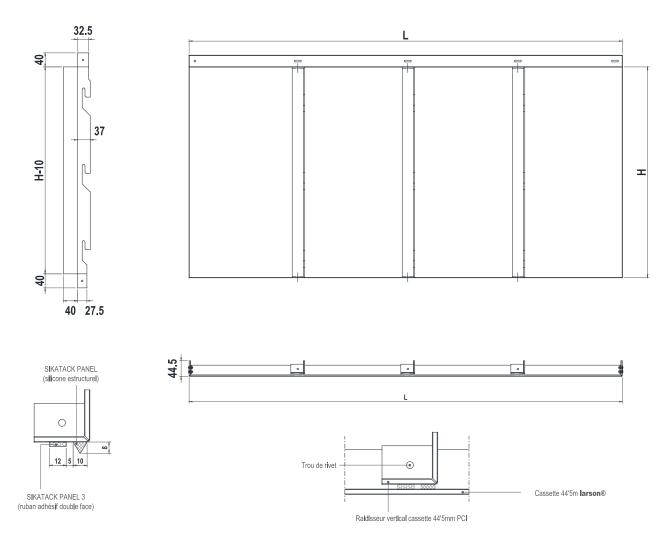
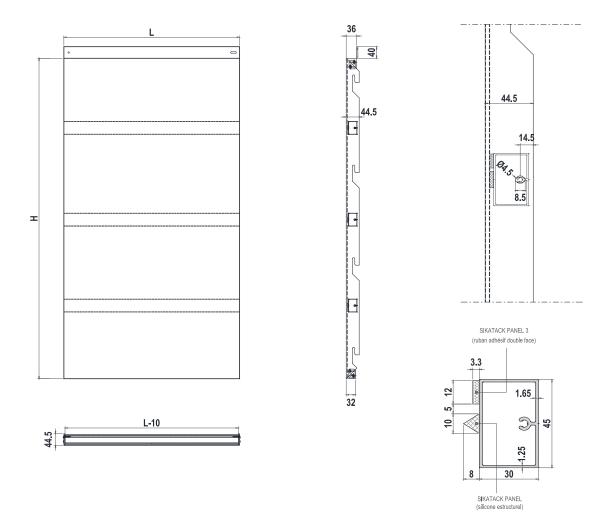
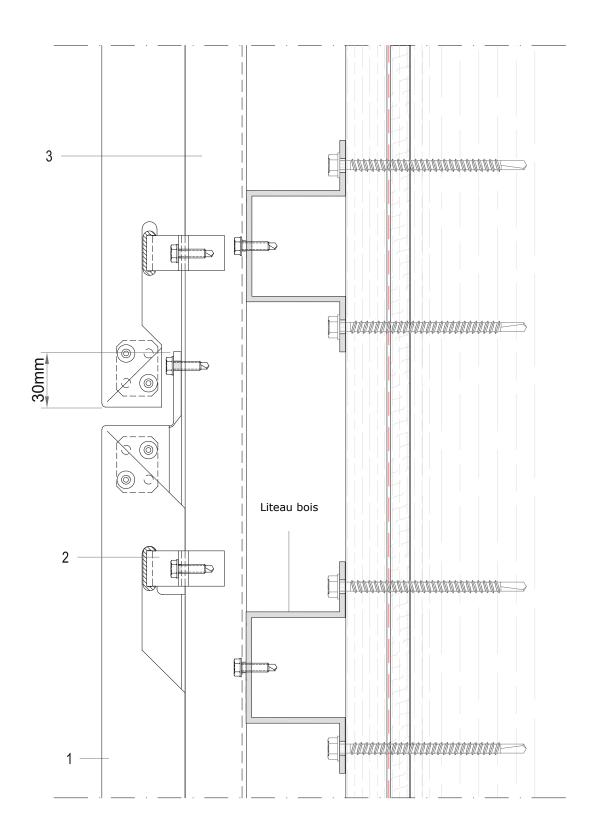



Figure 9bis - Exemple de disposition des raidisseurs horizontaux collés

Parol de COB conforme à la NF
DTU 31.2 ou de CLT visè par un
Avis Technique du GS3


Montant de COB

Ossature secundaire
horizontale

Profil alluminium LCH-1

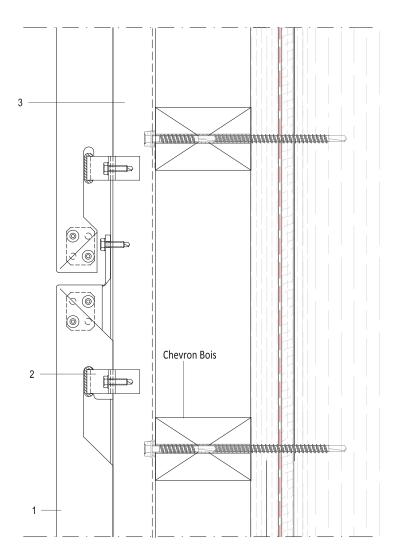

Figure 10 - Pose sur COB - Raccordement ossatures secondaires horizontales

Figure 11 – Joint horizontal fermé

- 1. Cassette larson®
- 2. Pièce de suspension LC-3 en aluminium
- 3. Profile aluminium LCH-1

Figure 11bis - Joint horizontal fermé

- 1. Cassette larson®
- 2. Pièce de suspension LC-3 en aluminium
- 3. Profile aluminium LCH-1

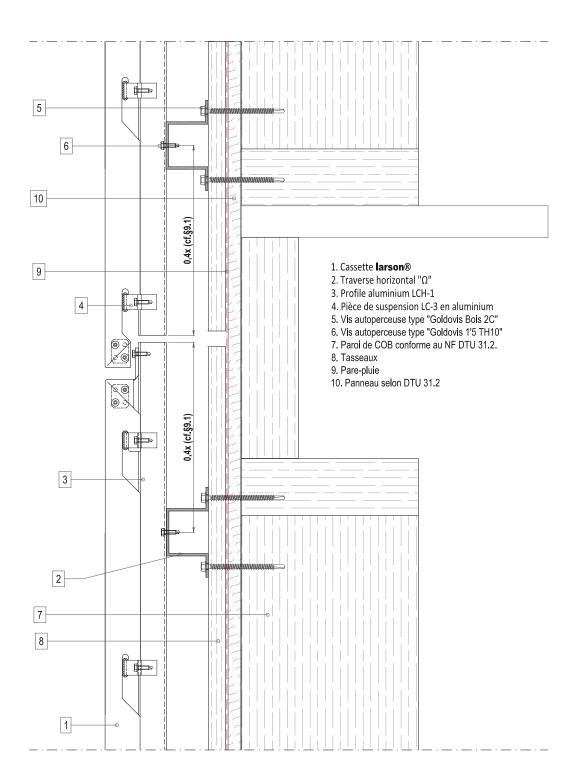

Figure 12 – Coupe verticale générale sur COB

Figure 13 – Coupe horizontale en paroi courante

- 1. Cassette larson®
- 2. Traverse horizontal " Ω "
- 3. Profile aluminium LCH-1
- 4. Pièce de suspension LC-3 en aluminium
- 5. Vis autoperceuse type "Goldovis Bois 2C"
- 6. Vis autoperceuse
- 7. Paroi de COB conforme au NF DTU 31.2.
- 8. Tasseaux
- 9. Pare-pluie
- 10. Panneau selon DTU 31.2

Figure 14- Fractionnement de l'ossature au droit de chaque plancher

4 5 6 9 10 1. Cassette larson® 2. Traverse horizontal " Ω " 3. Profile aluminium LCH-1 4.Pièce de suspension LC-3 en aluminium 5. Vis autoperceuse type "Goldovis Bois 2C" 6. Vis autoperceuse type "Goldevis 1'5 TH10" 9 7. Paroi de COB conforme au NF DTU 31.2 8. Tasseaux 9 9. Pare-pluie 30mm min. 10. Panneau selon DTU 31.2 **©** _ 20 3 7 2 8

Figure 15- Fractionnement de la lame d'air et recoupement du pare-pluie

Figure 16 – Pose sur COB – Coupe sur linteau de baie, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § 2.11.3)

Dispositions particulières du traitement des baies (Menuiserie en tunnel intérieur)

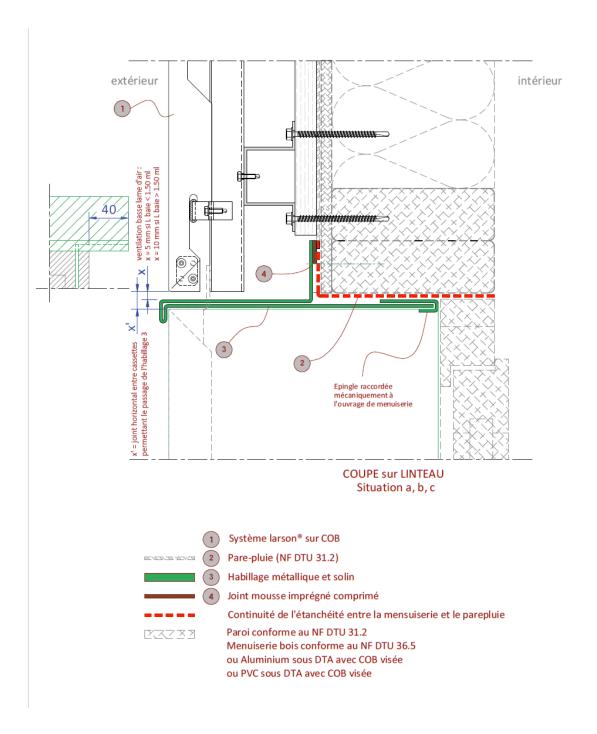
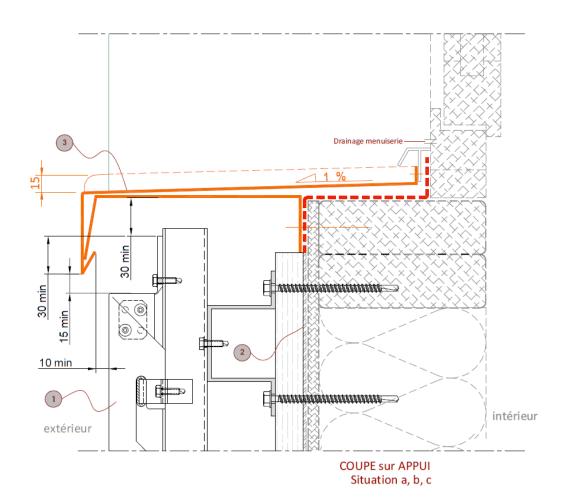



Figure 17 – Pose sur COB –Coupe sur appui de baie, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § 2.11.3)
Dispositions particulières du traitement des baies (Menuiserie en tunnel intérieur)

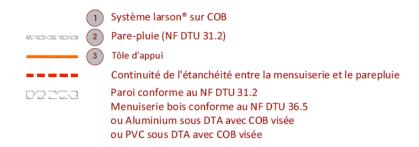
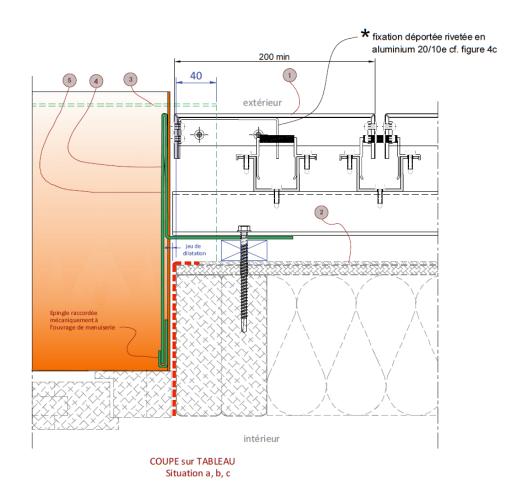



Figure 18 – Pose sur COB – Coupe sur tableau de baie avec raidisseurs collés, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § 2.11.3) Dispositions particulières du traitement des baies (Menuiserie en tunnel intérieur)

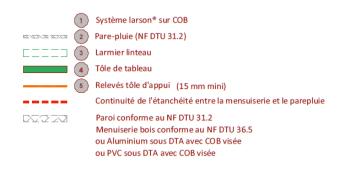


Figure 19 – Pose sur COB – Perspective, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § 2.11.3)
Dispositions particulières du traitement des baies (Menuiserie en tunnel intérieur)

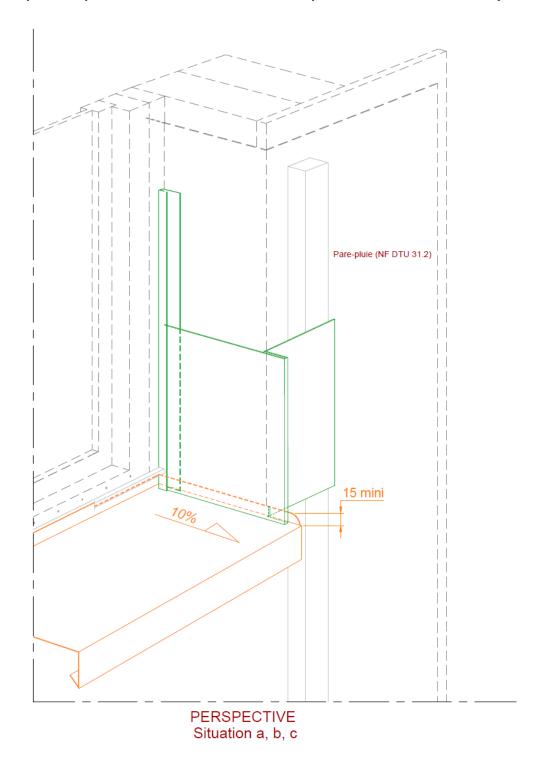
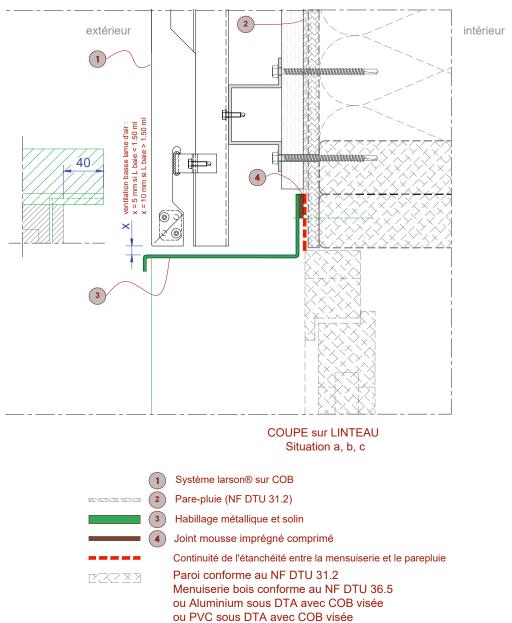
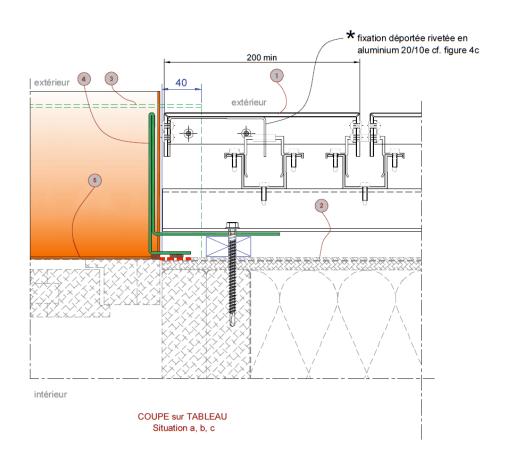
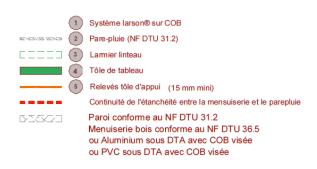



Figure 20 – Pose sur COB – Coupe sur linteau de baie, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § 2.11.3)
Dispositions particulières du traitement des baies (Menuiserie en tunnel au nu extérieur)

NOTA: Plan de calfeutrement applicable avec un précadre industriel formant domant large


Drainage menuiserie (3) Шi 30 30 min O (O 15 min (®) O 10 min intérieur extérieur **COUPE sur APPUI** Situation a, b, c Système larson® sur COB Pare-pluie (NF DTU 31.2) Tôle d'appui Continuité de l'étanchéité entre la mensuiserie et le parepluie Paroi conforme au NF DTU 31.2 Menuiserie bois conforme au NF DTU 36.5 ou Aluminium sous DTA avec COB visée


Figure 21 – Pose sur COB – Coupe sur appui de baie, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § 2.11.3)
Dispositions particulières du traitement des baies (Menuiserie en tunnel au nu extérieur)

NOTA: Plan de calfeutrement applicable avec un précadre industriel formant dormant large

ou PVC sous DTA avec COB visée

Figure 22 – Pose sur COB – Coupe sur tableau de baie avec fixation déportée rivetée, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § 2.11.3)
Dispositions particulières du traitement des baies (Menuiserie en tunnel au nu extérieur)

NOTA: Plan de calfeutrement applicable avec un précadre industriel formant dormant large

Figure 23 – Pose sur COB – Perspective, applicable sur COB (cf. § 2.11.2) ou sur CLT (cf. § 2.11.3) Dispositions particulières du traitement des baies (Menuiserie en tunnel au nu extérieur)

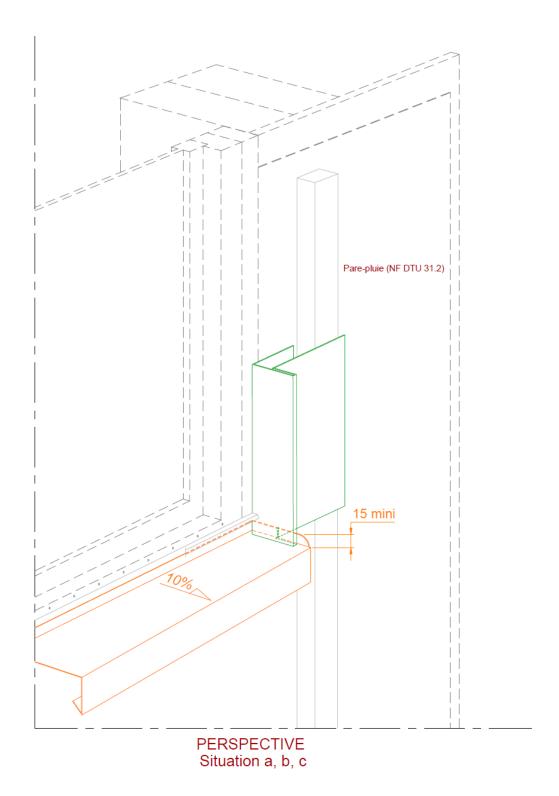
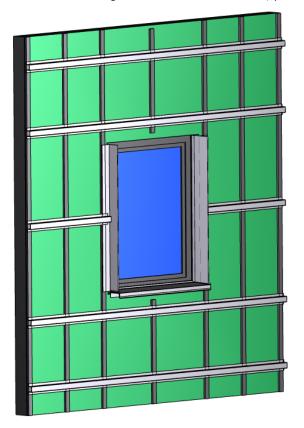
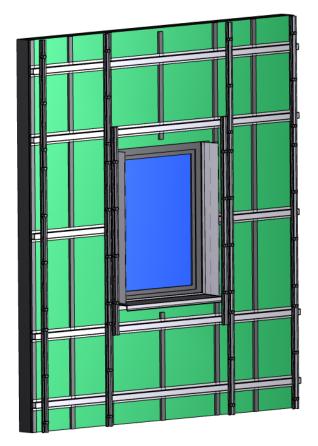
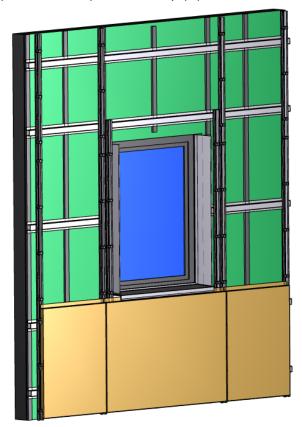
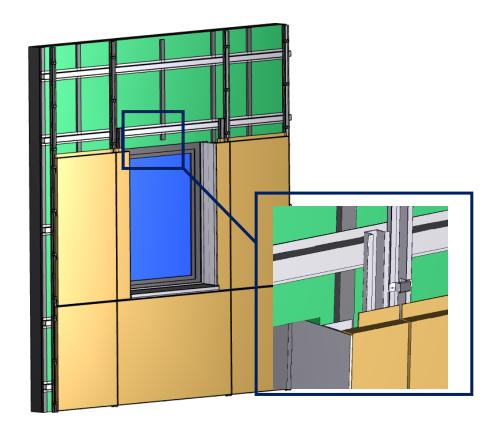


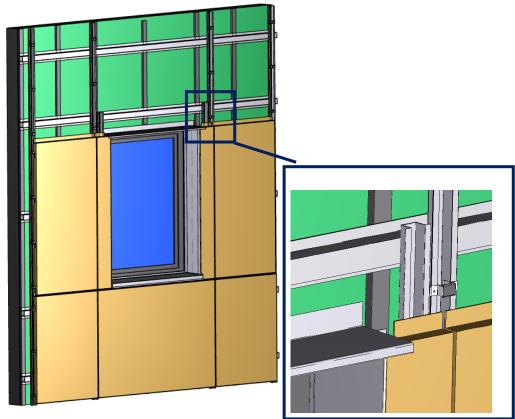
Figure 24 - Pose sur COB - Pas à pas


Etape 1 – Réception du support : Paroi de COB conforme à la NF DTU 31.2 ou de CLT visé par un Avis Technique du GS3. Pare-pluie fixé par tasseaux 27x45mm.


Etape 2 – Pose du support de bavette et de la bavette à oreilles.

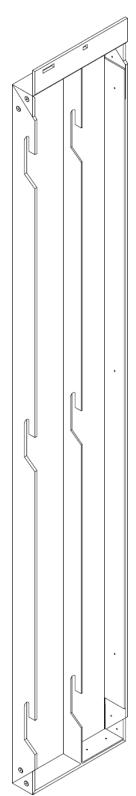

Etape 3 – Pose des épingles recevant les habillages de tableaux et de linteau, puis des habillages de tableaux.


Etape 4 – Pose des traverses horizontales.

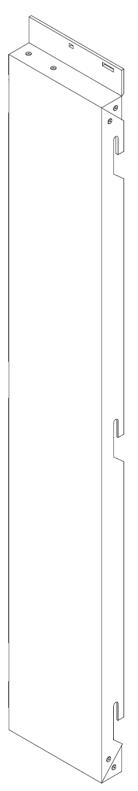

Etape 5 – Pose des profilés LCH-1 (équipés des curseurs LC-3).

Etape 6 – Pose des cassettes larson® en allège.

Etape 7 – Pose des cassettes larson® de part et d'autre de la menuiserie et grugeage du pli haut de cassette pour passage de l'habillage de linteau.



Etape 8 – Pose de l'habillage de linteau.



Etape 9 – Pose des cassettes **larson**® au-dessus de la menuiserie.

Figure 25 – Pose sur COB – Cassette de jonction sur habillage tableau avec fixation déportée

Face vue